Novel Bioremediation Processes for Treatment of Seleniferous Soils and Sediment
The aim of this Ph.D. was to develop a technology for the remediation of seleniferous soils/sediments and to explore microbial reduction of selenium oxyanions under different respiration conditions and bioreactor configurations.
Seleniferous soil collected from the wheat-grown agricultural land in Punjab (India) was characterized and its soil washing was optimized by varying parameters such as reaction time, temperature, pH and liquid to solid ratio. In order to maximize selenium removal and recovery from this soil, effect of competing ions and oxidizing agents as chemical extractants for soil washing were also studied. Although oxidizing agents showed a maximum selenium removal efficiency (39%), the presence of oxidizing agents in the leachate and the agricultural soil may increase the cost of their post-treatment. Aquatic plants, Lemna minor and Egeria densa were used to study phytoremediation of the soil leachate containing oxidizing agents. However, the selenium removal efficiency by aquatic weeds was significantly affected by the high concentrations of these oxidizing agents in the soil leachate.
Seleniferous soil flushing revealed the selenium migration pattern across the soil column. Migration of soluble selenium fraction from the upper to the lower layers and its subsequent reduction and accumulation in the lower layers of the soil column was observed during soil flushing. The selenium removal efficiency by the soil flushing method decreased with an increase in the column height. Furthermore, the soil leachate containing selenium oxyanions obtained from soil washing was treated in a UASB reactor by varying the organic feed. Effluent containing less than 5 μg L-1 selenium was achieved, which is in accordance with the USEPA guidelines for selenium wastewater discharge limit.
Moreover, ex situ bioremediation of selenium oxyanions was studied under variable conditions. An aerobic bacterium (Delftia lacustris) capable of transforming selenate and selenite to elemental selenium, but also to hitherto unknown soluble selenium ester compounds was serendipitously isolated and characterized. Alternatively, anaerobic bioreduction of selenate coupled to methane as electron donor was investigated in serum bottles and a biotrickling filter using marine sediment as inoculum. Finally, the effect of contamination of other chalcogen oxyanions in addition to selenium was studied. Simultaneous reduction of selenite and tellurite by a mixed microbial consortium along with the retention of biogenic Se and Te nanostructures in the EPS was achieved during a 120-day UASB bioreactor operation.